SUBMICRON SYSTEMS ARCHITECTURE
Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-91-03
1 March 1991

Reporting Period: 1 October 1990 — 28 February 1991
Principal Investigator: Charles L. Seitz

Faculty Investigators: Alain J. Martin
Charles L. Seitz
Jan L. A. van de Snepscheut

Sponsored by the
Defense Advanced Research Projects Agency
DARPA Order Number 6202

Monitored by the
Office of Naval Research
Contract Number N00014-87-K-0745

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
01 MAR 1991 2. REPORT TYPE 01-10-1990 to 28-02-1991
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Submicron Systems Architecture £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 16
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of research activities and results for the five-month
period, 1 October 1990 to 28 February 1991, under the Defense Advanced Research
Project Agency (DARPA) Submicron Systems Architecture Project. Previous
semiannual technical reports and other technical reports covering parts of the
project in detail are listed following these summaries, and can be ordered from
the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI systems
appropriate to a microcircuit technology scaled to submicron feature sizes. Our work
is focused on VLSI architecture experiments that involve the design, construction,
programming, and use of experimental multicomputers (message-passing concurrent
computers), and includes related efforts in concurrent computation and VLSI design.

2. Architecture Experiments

2.1 Mosaic Project
Chuck Seitz, Nanette J. Boden, Jakov Seizovic, Wen-King Su

Mosaic C is an experimental fine-grain multicomputer aimed at exploring a region of
the space of multicomputer designs that is shifted by two orders of magnitude from
today’s medium-grain systems. Whereas today’s medium-grain multicomputers
typically employ hundreds of nodes with megabytes of storage per node, a Mosaic
system may employ tens of thousands of nodes with tens of kilobytes per node.

The attraction of the fine-grain form of multicomputer is, first of all, that it
offers greater performance/cost than the medium-grain form. A specific advantage
of the Mosaic C design is that a node with only tens of kilobytes of storage can
be implemented with a single VLSI chip. The single-chip Mosaic C node (see the
plot on the following page) includes 64KB of primary storage; read-only storage for
initialization, self-test, and bootstrap; a 16-bit processor and packet interface; and
a high-performance, asynchronous, 2D-mesh router.

We are currently starting the construction of a 16K-node Mosaic system based
on these single-chip nodes. Mosaic program-development systems are, however,
already in routine use for programming-system and application development.

The Mosaic C project includes numerous interacting subtasks ranging from chip
design and system packaging to programming-system development and application
studies. Progress in these tasks is described below. Of particular interest, however,
is that over the past five months a contract was negotiated with Hewlett-Packard
Company for the non-recurring engineering, packaging tooling, and first set of
prototype 64-node circuit boards; this contract is now signed, and prototype boards
are expected to be completed in July.

During the past five months, work on programming systems for fine-grain
multicomputers has proceeded in a coordinated way on several levels, including;:

1. An examination of the programming notation we employ for expressing message-
passing programs. These studies have revealed a relatively easy way in which
we can express message-passing programs in our standard semantics using a
subset of C4++. We are just finishing the implementation of a prototype of this
system, and will report in greater detail on this aspect of our work in the next
semiannual technical report.

2. Implementation of programming tools, eg, compilers, loaders, etc. The results of
some of these efforts are described below; an additional related effort is described
in section 3.2.

3. The implementation of an advanced runtime system for the Mosaic. The results
of these efforts are described below; related research on runtime-system design
fundamentals is described in section 3.1.

9.

Plot of the Mosaic C node.

-3-

Two expositions of multicomputer architecture, design, programming systems,
and applications, including many details of the Mosaic design and programming
system, were published during the past five months:

Charles L. Seitz, “Concurrent Architectures,” Chapter one in VLSI and
Parallel Computation, edited by Robert Suaya and Graham Birtwistle, Morgan
Kaufmann Publishers, 1990.

Charles L. Seitz, “Multicomputers,” Chapter five in Developments in Concur-
rency and Communication, edited by C. A. R. Hoare, Addison-Wesley, 1991.

2.1.1 The Memoryless Mosaic Chip

The Memoryless Mosaic MM3.0 chip was our first attempt to incorporate the
asynchronous router into the Mosaic framework. As indicated in our previous
semiannual technical report, testing of the MM3.0 chip discovered two minor
design errors. The corrected version of the Memoryless Mosaic was submitted
for fabrication in September 1990 as MM3.1. The chips arrived in the beginning
of November, were subjected to nearly exhaustive tests, and proved to be fully
functional. The yield on this run was 46/50 = 92%. These MM3.1 chips have been

used extensively in our program-development boards.

With the MM3.1 chips now functional, continued refinement of the Memoryless
Mosaic chips has been aimed at performance improvements and easier integration
into the program-development boards.

Our performance target for the single-chip Mosaic nodes at Vg = 4V is 40MHz
operation for the synchronous parts and 80MB/s (an equivalent word rate) for the
asynchronous router channels. Tests of the 64KB Mosaic memory show that it
operates correctly up to 44MHz, and the router and packet interface to 88MB/s.
In spite of the off-chip path to memory, the processor in the MM3.1 was able to
operate up to 40MHz except for a small number of critical paths that are revealed
in certain instructions between 30MHz and 40MHz operation.

A series of communication-intensive tests revealed a critical path that included
the static PLA used for the conditional-branch instruction. A reexamination of
timing requirements confirmed that it was possible instead to use our standard,
precharged NOR-NOR PLA. Under the new timing, the condition-code PLA
operates in domino-logic style with the clock phases reversed from those of the
microcode PLA.

The MM3.1 tests also discovered that one of the y channels on the program-
development board had its bit-order reversed. This problem was not discovered
with MM3.0 because it was masked off by the timing-margin problems described in
our previous report.

MM3.2 was submitted for fabrication on 5 December 1990 with the improved
condition-code PLA and the y-channel bit order reversed. (Although the bit-reversal

4.

problem was, strictly speaking, a problem with the circuit board, it was easier to
fix it on the chip.) The only other change from MM3.1 was to delay the driving
of address pins. In the original design, address drivers were a bit faster then we
expected, causing the precharged value on the internal address bus to make a sharp

dl

spike on the address output pins as well. This spike unnecessarily increases the 7

noise, so the delays were changed to eliminate it.
The MM3.2 chip was returned from fabrication on 14 February 1991, and proved
to be fully functional.

The run on which the MM3.2 was fabricated was of significantly lower quality
than the usual MOSIS 1.2um runs. Yield was only 39/53 = 74%, where our usual
experience for MM3 chips is close to 90%. As usual, we tried to identify every
single fault to assure that there is no marginal circuitry or layout in the design.
Six of the 14 bad chips were damaged during the bonding phase, having mechanical
damage around some of the bonding pads, and /or missing or shorted bonding wires.
Fabrication defects in four more chips have been positively identified. The remaining
4 chips contain probable, but invisible, fabrication defects.

The devices on these MM3.2 chips were also at least 10% slower than previous
runs, including the MM3.1 chips. This phenomenon had a fortunate side-effect of
enabling us to trace additional critical paths that would probably have been masked
by the the speed limit of our program-development boards.

An MM3.3 chip was submitted for fabrication on February 19; this contains
a few adjustments to the driver sizes, and attempts improvement on the detected
critical paths. We plan to populate one program-development board with faster,
15ns SRAM chips, to enable us to test the chips at the design target frequency of
40MHz.

With all of the silicon parts now thoroughly tested, we have assembled the layout
of the full Mosaic C node. (See the plot on page 3.) This chip is approximately
9.25mmx10.25mm in 1.2pm MOSIS SCMOS design rules.

2.1.2 Mosaic C Self-Test and Bootstrap Program

A version of the ROM-resident program for the full Mosaic has been created using
the new C compiler. The program performs a number of self-test routines, waits for
a message to arrive, and branches to the program contained in the message body.
The self-test routines include: register test, ALU test, memory test, and packet-
interface test, in that order. The register test propagates a shifting bit pattern
through the processor’s 24 data registers. The ALU test performs a fixed set of
operations on a set of predefined number pairs. The memory test rotates and shifts
a 33-word bit pattern through the memory. To combine the packet interface test
with memory tests, the bit patterns are written through the packet interface from
the processor to itself. The reading and writing of the pattern accomplishes tests of
parts of the router, the synchronizer, the fifos, and the message DMA mechanism.

-5

2.1.3 Manufacturing Contract

A contract has been negotiated and now signed with Hewlett-Packard Company to
generate photomasks, fabricate a first run of chips on their CMOS34 line, develop
test programs, design and build the TAB-packaging tooling, and assemble and
test three prototype 8x8 Mosaic boards. The goal of this effort is prepare for
manufacturing 8x8 boards in quantity. The target cost for these boards in larger

lots is less than $5000 (less than $78/node(!)).

2.1.4 Mosaic C Compiler

The Mosaic C compiler is an adaptation of the gnu C compiler. The compiler has
been greatly improved since our previous report. It now accepts the full C language
with the exception of floating-point data types, and it produces highly optimized
assembly code.

The compiler itself is only a part of the tool set that one would need for
compiling a C program into runable Mosaic programs. The compiler converts C
programs into assembly-language programs. Additional tools are needed to convert
assembly-language programs into object-code files, to combine object-code files, and
to maintain compiler libraries. Instead of spending our efforts reinventing the wheel,
we borrowed the Sun-4 compiler tool set for use with Mosaic programs. By defining
the Mosaic object-code format and library format to be identical to those of the
Sun-4, we can use the Sun-4 1d and ar programs on Mosaic object-code files and
libraries directly.

Furthermore, we spared ourselves the full detail of Sun-4 object-code format
and the work that is required to write a full assembler. A simple pre-assember is
used to translate a mosaic assembly-language file into an intermediate token file
containing a sequence of generic assembler directives (.word, .text, .global, etc),
labels, and constants. The partially digested token file is then converted by the
Sun-4 assembler into Sun-4 object files.

This section is the D;AR,PAA—I‘G uired demonstration that we t]fy to “work smart
q ’
not hard.”)

2.1.5 Reactive Kernel for Mosaic Program-Development Boards

The targeting of the gnu C compiler for the Mosaic has enabled us to port the
Reactive Kernel node operating system to the Mosaic. During the last four months,
a number of both computation- and communication-intensive test programs have
been written in this environment.

2.1.6 Runtime System Implementation

Work has been progressing on the implementation of fine-grain multicomputer
runtime systems that distribute memory demands throughout the nodes of the

-6-

machine so that no one node overflows its memory bounds until a significant fraction
of the total memory of the machine has been consumed. This implementation
depends strongly on the selective-receive mechanism described in previous reports.
A prototype runtime system including these algorithms was developed in C and
debugged on a simulator that runs on medium-grain multicomputers.

With the completion of the Mosaic C compiler, this prototype runtime system
was compiled for the Mosaic. We are currently in the process of porting this runtime
system to the Mosaic program-development boards for debugging and profiling.
As part of this porting process, we have defined rudimentary machine-loading
procedures and host interfaces, as well as defining the minimal bootstrapping
support required for the runtime system.

2.1.7 Copyless Message Handling

In our previous report, we mentioned that two Mosaic runtime system prototypes
had been developed in C, each with a different approach to local node memory
management. Since that time, we have fully adopted the principles of one of
those approaches. This approach can be best termed as a copyless runtime system.
One of the innate properties of distributed-memory architectures is the amount of
copying that is performed, for example, in message passing where data is copied
from the memory of one node to the memory of another node. The goal of this
copyless approach is to limit copying to message passing; no copying should occur
within the local node memory. We have practically achieved this goal in the current
prototype by utilizing the broad flexibility of the Mosaic message-passing system.
(It is interesting that for Mosaic and advanced medium-grain systems such as the
Symult S2010, copying by message passing from the memory of one node to the
memory of another is actually faster than copying within local memory.)

When a packet arrives at a node, its contents are written into a section of
Mosaic memory delimited by two pointers set by the runtime system. If the whole
message fits into the provided buffer, a message-received interrupt is set for the
runtime system. If the entire message does not fit, a buffer-full interrupt is set. In
this case, the remainder of the packet is blocked into the message network, and a
new buffer must be provided. The contents received thus far, if needed later, should
be copied by the runtime system into the new buffer and then the pointers reset
so that the remaining message contents are written into the new buffer. Clearly,
to avoid copying one must use buffer sizes that are large enough to accommodate
the incoming message, but to consistently use buffer sizes that are larger than the
incoming message simply wastes memory.

Using the remarkably flexible interrupt mechanisms of Mosaic, we can
implement a two-phase receive for messages to ensure that all buffers for incoming
messages are of the correct size. We first set the pointers for the incoming message
to a small buffer that is the size of a message header, the first word of which is
the length of the incoming message (minus the header). As the message arrives,

7

the header is written into the small buffer. When that buffer is full, the buffer-
full interrupt is set. The runtime system extracts the length information from the
buffer and allocates a new buffer of that size to receive the remainder of the message.
When the pointers to the new message buffer have been set, the remainder of the
message is written directly into the new buffer. The header of the message need not
be copied, and this buffer can be manipulated directly throughout the life-cycle of
the message.

The practicality of this technique depends on the relative speeds of the network
and of the buffer allocation algorithm. While the allocation routine is finding a new
buffer of the correct size for the incoming message, other messages are blocked in
the network. Preliminary analysis indicates that this technique will not significantly
degrade the overall performance of the machine in spite of this blocking, because
the packet interface and routers include a substantial amount of buffering.

2.2 Second-Generation Medium-Grain Multicomputers*®

Chuck Seitz, Joe Beckenbach, Christopher Lee, Jakov Seizovic, Craig Steele,
Wen-King Su

Our Caltech project continues to work with the DARPA-supported Touchstone
project at the Intel Supercomputer Systems Division, principally in connection with
the mesh-routing chips for the Delta prototype (see section 4.4). The acquisition of
a 570-node Delta system by a Caltech-led consortium was announced in November.
The routing-mesh backplane for this 30Gflop system is 16 nodes high by 36 nodes
wide, and is based on the FMRC2.3 mesh-routing chip.

The project currently operates the following medium-grain multicomputers: 8-
node and 64-node Cosmic Cubes, a 128-node Intel iPSC/1, a 16-node Intel iPSC/2,
and 32-node and 192-node Symult S2010 systems. The 192-node S2010 system,
which is the machine most preferred by users, is accessed through the Caltech
Concurrent Supercomputer Facilities. Utilization of this system continues to be at
a level of approximately 90% of the available node-hours.

The project continues to distribute the Cosmic Environment package to several
additional sites each month.

* This segment of our research is sponsored jointly by DARPA and by a grant
from Intel Supercompter Systems Division (Beaverton, Oregon).

-8

3. Concurrent Computation

3.1 Fine-Grain-Multicomputer Runtime Systems

Nanette J. Boden, Chuck Seitz

These studies of the design of distributed runtime systems for fine-grain multicom-
puters are closely coordinated with the implementation of the experimental runtime
systems on the Mosaic, described in section 2.1.6 and 2.1.7.

In our previous report, we listed several undue restrictions commonly found
in medium-grain multicomputer programming. These restrictions are related to
assumptions adopted to simplify the implementation of the runtime systems. For
example, a multicomputer program may continue to execute so long as any node
that has been chosen to receive a new process can allocate memory resources to
accommodate the code and data for the process. When some node runs out of
memory, however, the computation will halt (with an “out of memory” indication).

For medium-grain machines, which typically have megabytes of primary storage
per node, this failure point occurs only after some significant fraction of the total
memory of the machine has been consumed. If the storage of one node of a ten-
node machine is exhausted, then at least one-tenth of the memory is in use. More
importantly, if the storage load was even approximately balanced, much more of
the total memory of the machine was actually in use before the failure.

In contrast, the memory of one node of a fine-grain multicomputer represents a
tiny fraction of the total memory of the machine. The typically tens of kilobytes of
storage contained in a fine-grain multicomputer node precludes treating the node
as having boundless storage. If we did not take active measures to distribute and
balance the storage demands of a computation, a small fluctuation in the memory
requirements of a node could cause the computation to fail, even though the great
majority of the total memory in the machine might not be in use. In addition, we
should not consider the nodes as possessing all of the storage available. Thus, a fine-
grain multicomputer might be more usefully modeled as an ensemble of nodes with
finite storage plus at least one node with infinite storage. In practice, the nodes with
infinite storage are those that host disks. This infinite aspect of the abstract machine
is required so that we can reason about computations whose storage demands are
unbounded.

Instead of basing the design of the runtime system of a fine-grain multicomputer
on assumptions that are clearly not reasonable for this architecture, we have been
developing distributed algorithms for system functions such as process creation and
code distribution. These algorithms do not rely on the presence of boundless storage
at every node. Most of the algorithms we have devised employ the selective-receive
mechanism discussed in our previous report. The selective-receive mechanism is
implemented using only reactive semantics and process creation.

9.

These runtime-system algorithms include a user-process creation mechanism
that permits a congested node to refuse a process-creation request. The availability
of a selective receive mechanism also provides opportunities for experimention
with sparse distribution of process code. We are currently investigating various
alternatives for dispersing and later executing process code. The experimental
vehicle for this work is the Mosaic runtime system described in section 2.1.6.

3.2 A Pascal Compiler for the Mosaic
Jan L. A. van de Snepscheut, Johan J. Lukkien

Experiments with different implementations and semantics of communication
primitives have favored a version in which it is not necessary to maintain a receive
queue of incoming messages. The ability to write various implementations in Pascal
instead of assembly language contributed significantly to the number and scope
of these experiments. Our favorite version has now been incorporated into the
compiler, and is the only change we have made to it during the past six months.
The performance that we get from this Pascal implementation is quite good even
though no sophisticated code optimizations are performed.

For example, register allocation is done in a crude manner. For the dhrystone
benchmark (on one processor) we measure a performance of 2494 cycles per
iteration, which on the present Mosaic program-development system (with a 25MHz
clock) delivers a speed of 10,000 dhrystones/sec. At the projected clock speed of 40
MHz this implies 16,000 dhrystones/sec.

3.3 Fluid-Flow Computations
Jan L. A. van de Snepscheut, H. Peter Hofstee

The Mosaic program-development systems have been used to carry out some fluid-
flow computations. The model that we use is based on equilibrium flux flow, a direct
simulation method for compressible, inviscid, ideal-gas flow, which is well-suited to
conditions for high-speed aerodynamics. The present program uses a fixed, regular
grid. The granularity of the computation depends on the granularity of the grid.

This approach lends itself well to parallel computation, and we measure good
speedups, but the fixed grid limits its applicability. We are now working on an
algorithm in which the shape and granularity of the grid are adapted by the
computation. This obvious idea turns out to require a not-so-obvious review of
the interpretation of the grid.

3.4 Formal Methods for Concurrency
Jan L. A. van de Snepscheut, Johan J. Lukkien

Large circuits are constructed from smaller circuits, and in doing so we prefer to
use the functional description of the building blocks rather than having to look

-10-

inside the smaller circuits and figure out their operation in the context of the large
circuit. This “black box” approach requires some discipline from the designer of
the building blocks. For software, one would like to follow the same pattern, but in
this case no design discipline has yet been established. Although programs in which
we are interested only in their initial and final states can be handled satisfactorily,
no compositional methods for reasoning about the intermediate states of programs
exist. This is vital, however, for understanding reactive and concurrent programs,
and is the key to any form of stepwise refinement. We have encouraging results in
dealing with intermediate states, as described in Johan Lukkien’s PhD thesis, but
we have not yet been able to handle concurrency.

Attempts to give a precise specifcation of the sliding-window protocol has
uncovered an error in one of the versions of the algorithm under the usual weak
assumptions on communication channels. We have shown that the error does not
occur in a slightly different (and more efficient) version, or if one makes stronger
assumptions about the channel.

3.5 Distributed Resource Management
Jan L. A. van de Snepscheut, H. Peter Hofstee, Johan J. Lukkien

We have written a number of widely different implementations of a functional
programming language. The language has no notion of process or memory
management and, therefore, serves as a test vehicle for seeing how well we can
provide those automatically in an implementation. Distribution of computational
activities (evaluating a function in a processor where time is available) is done
automatically and we are comparing different versions, both by experiment and by
theory. Automatic storage management (storing data in a processor where space is
available) remains to be done. Presently, space is allocated in the simplest possible
way, namely, in the processor in which the request for more storage originates.

3.6 A Concurrent Wire-Routing Program
Su-Lin Wu, Chuck Seitz

We are attempting to develop a highly concurrent program to generate wire routings
for circuit boards and VLSI chips. As reported previously, this program adapts the
Lee-Moore algorithm for finding the shortest path between two points to a method
of finding good (low-cost) routes of n points. By taking advantage of existing
electrically equivalent wires, this heuristic gives better routes than does simply
applying the two-point algorithm repeatedly.

An initial prototype of this program has been completed. The prototype has
exposed areas in which more concurrency might be achieved. We are now interfacing
this program with a VLSI CAD tool to study and correct the inefficiencies
discovered.

-11-

3.7 The Page Kernel
Craig S. Steele, Chuck Seitz

The previously described Page Kernel (PK) concurrent programming environment,
operating on the Symult S2010 multicomputer, has continued to improve in perfor-
mance and reliability. PK is an evolution of the now-familiar reactive programming
model. High-performance message systems allow the visible distinctions between
shared- and distributed-memory machines to be obscured, permitting the program-
mer to access shared data structures much as in a shared-memory machine. PK uses
the virtual-memory capabilities of second-generation multicomputer nodes to im-
plement data-sharing mechanisms supporting multiple, overlapping address spaces.

Some small optimizations have resulted in significant performance increases.
Each multicomputer node has a software-maintained cache of data structures
called blocks that have been accessed by actions (a light-weight, reactive process).
Reference counting allows these cached copies to be purged from the cache if not in
use. However, in computations that are actively creating new actions, it was found
to be advantageous to change from an eager to a lazy algorithm that defers purging
until either the cache is full or no actions are scheduled for execution. This change
and an analogous decision to defer reclamation of action virtual context resources
can particularly affect the startup speed of computations and the overall speed of
small, highly concurrent problems, for which initial costs can be significant.

Actions are coded as C++ functions, and have actual arguments bound to the
formal parameter list upon instantiation. The arguments may include portable
(between actions) references to globally accessible data structures. Converting the
portable form of the reference to a localized pointer within an action’s address space
is a relatively expensive operation. Caching the localized pointer for subsequent use
has dramatically sped up some calculations.

With these and several other incremental improvements, PK programs demon-
strate high efficiency even on one or two multicomputer nodes. For example, the
performance penalty of a 128x128 matrix-multiply example run on a single node
with a concurrent formulation using 128 actions is currently 41% when compared
with a sequential version.

_12-

4. VLSI Design

4.1 CAD for Asynchronous Circuit Synthesis

Drazen Borkovi¢, Alain J. Martin

We are pursuing our effort towards the realization of a fully integrated CAD
system for the design of asynchronous VLSI circuits. Ultimately, the system will
integrate synthesis, placement and routing, and performance-analysis and circuit-
optimization tools.

The heart of the synthesis tool is a program (PRGEN) that generates minimal
production rules from handshaking expansion of the program to be compiled
into a circuit. Previously, PRGEN could automatically compile only straightline
programs. It has now been extended to handle choice (IF-statements). Once
nested IF-statements have been added, it will be possible to mechanically compile
all programs into optimal production rules. (We can already automatically generate
sized-transistor layouts from production rules.)

The program allows the designer to provide additional information in order to
obtain optimal circuits. The information that corresponds to the knowledge of the
high-level program can be provided in a structured way that reflects the organization
of the specification. Since not all information is known at the high level (initial stage
of the design), assertions can be made about lower-level properties of the design.

4.2 Asynchronous Circuit Design in Gallium Arsenide

José A. Tierno, Alain J. Martin

The GaAs circuits designed in the previous reporting period were received from
fabrication and tested for functionality and speed. Most of the subcircuits were
found to be working correctly; speed was greatly reduced by a design flaw in the
pad driver circuit, which made internal delays very difficult to measure. Another
test circuit was designed and sent for fabrication with new pad designs, some test
circuitry and a fast asynchronous incrementer.

A timing model was developed that provides fast evaluations of circuit
performance. This model was incorporated into an event-driven simulation program
(called PRSIM) that uses the timing information generated by the model from a
transistor description of the circuit. PRSIM was originally developed for CMOS,
and was adapted recently to GaAs. The delay model is accurate to within 10% of
a VSPICE simulation, Vitesse’s version of the spice2g program.

Several other CMOS tools were modified for GaAs, especially our standard-cell
place-and-route program. A full set of cells was designed to work with this program,
and these are being used in the current microprocessor project.

We have started to design a GaAs implementation of the Caltech Asynchronous
Microprocessor. Most of the datapath cells have already been designed and are

-13-

being laid out. The control logic will be generated automatically. We are waiting
for the results of the last-submitted chip to get feedback on the pad design and
support circuitry.

Unfortunately, at the moment, the lack of good switch-level simulation tools for
the type of GaAS circuits we are using makes us quite vulnerable to trivial errors
during hand layout or hand compilation.

4.3 Testing Asynchronous Circuits

Pieter J. Hazewindus, Alain J. Martin

We have shown that a single stuck-at fault in a non-redundant asynchronous
circuit results in a transition either not taking place or firing prematurely, or both,
during an execution of the circuit. This result contradicts a widespread belief that
asynchronous circuits are “self-testing” because a single stuck-at fault always results
in the circuit halting.

A transition not taking place can be tested easily, as this always prevents a
transition on a primary output from taking place. A premature firing can also be
tested but the addition of testing points may be required to enforce the premature
firing and to propagate the transition to a primary output. Hence all single stuck-
at faults are testable. All test sequences can be generated from the high-level
specification of the circuit. The circuits are hazard-free in normal operation and
during the tests.

A simple scan design is used to connect the testing points. The design is an
asynchronous adaptation of a shift-register queue.

The conclusion of this preliminary investigation of asynchronous circuit testing
can be put in the “bad-news/good-news” form. The bad news is that, contrary to
common belief, a single stuck-at fault does not always lead to the circuit halting,
but may also lead to some transitions firing prematurely. The good news is that,
also contrary to common belief, any single stuck-at fault can be tested.

We are redesigning the control part of the Caltech Asynchronous Microprocessor
so as to make the circuit fully testable. A first redesign indicates that the number
of extra testing points is very small. Three of the five processes that constitute the
control of the microprocessor each require one testing point. An extra testing point
is required when the processes are connected together. We have not yet investigated
how the test sequences should be generated. They all can be generated from the
high-level specification of the circuit, but that may be too expensive—in terms of
the size of the vectors—for certain circuits, eg, datapaths. We have also ignored
some complications created by the reset procedures.

-14-

4.4 Fast, Self-Timed, Routing and Communication Chips

Chuck Seitz, Jim Miller

We are working with a group of students from the Caltech VLSI-design class to
develop a new set of routing automata from which a wide variety of routing and
communication chips will be assembled. These new routing automata employ two-
cycle signaling internally, and are expected to be easier to compose than the cells
in the Frontier-series mesh-routing chips (FMRC chips).

The first test chip is a slack chip that relaxes non-interference protocols to allow
high-bandwidth communication over cables up to about 20m in length. This chip
is expected to be submitted for fabrication in 1.2pm MOSIS SCMOS within the
next month, and, if successful, will be used to connect between Mosaic program-
development boards and arrays.

-15-

